Opioids excite dopamine neurons by hyperpolarization of local interneurons.
نویسندگان
چکیده
Increased activity of dopamine-containing neurons in the ventral tegmental area is necessary for the reinforcing effects of opioids and other abused drugs. Intracellular recordings from these cells in slices of rat brain in vitro showed that opioids do not affect the principal (dopamine-containing) neurons but hyperpolarize secondary (GABA-containing) interneurons. Experiments with agonists and antagonists selective for opioid receptor subtypes indicated that the hyperpolarization of secondary cells involved the mu-receptor. Most principal cells showed spontaneous bicuculline-sensitive synaptic potentials when the extracellular potassium concentration was increased from 2.5 to 6.5 or 10.5 mM; these were prevented by TTX and assumed to result from action potentials arising in slightly depolarized local interneurons. The frequency of these synaptic potentials, but not their amplitudes, was reduced by opioids selective for mu-receptors. It is concluded that hyperpolarization of the interneurons by opioids reduces the spontaneous GABA-mediated synaptic input to the dopamine cells. In vivo, this would lead to excitation of the dopamine cells by disinhibition, which would be expected to contribute to the positive reinforcement seen with mu-receptor agonists such as morphine and heroin.
منابع مشابه
Dopamine modulation of membrane and synaptic properties of interneurons in rat cerebral cortex.
Dopamine (DA) is an endogenous neuromodulator in the mammalian brain. However, it is still controversial how DA modulates excitability and input-output relations in cortical neurons. It was suggested that DA innervation of dendritic spines regulates glutamatergic inputs to pyramidal neurons, but no experiments were done to test this idea. By recording individual neurons under direct visualizati...
متن کاملSeparate GABA Afferents to Dopamine Neurons Mediate Acute Action of Opioids, Development of Tolerance, and Expression of Withdrawal
GABA release from interneurons in VTA, projections from the nucleus accumbens (NAc), and rostromedial tegmental nucleus (RMTg) was selectively activated in rat brain slices. The inhibition induced by μ-opioid agonists was pathway dependent. Morphine induced a 46% inhibition of IPSCs evoked from the RMTg, 18% from NAc, and IPSCs evoked from VTA interneurons were almost insensitive (11% inhibitio...
متن کاملCooperative activation of D1 and D2 dopamine receptors enhances a hyperpolarization-activated inward current in layer I interneurons.
Layer I of the neocortex comprises axonal processes from widespread regions of the brain and a unique population of GABAergic interneurons. Dopamine is known to directly depolarize layer I interneurons, but the underlying mechanism is unclear. Using whole-cell recording techniques in neocortical brain slices, we have examined how dopamine increases excitability of layer I interneurons in postna...
متن کاملMembrane properties and response to opioids of identified dopamine neurons in the guinea pig hypothalamus.
The electrophysiological properties and opioid responsiveness of the dopamine-containing neurons in the arcuate nucleus of the guinea pig hypothalamus were examined. Dopamine-containing neurons, identified immunocytochemically by the presence of tyrosine hydroxylase, had a mean length-to-width profile of 14.9 +/- 4.4 x 11.5 +/- 3.1 microns (N = 14). The Na+ action potential of these neurons was...
متن کاملGABAergic and glutamatergic inhibition of nonspiking local interneurons in the terminal abdominal ganglion of the crayfish.
Nonspiking local interneurons in the terminal abdominal ganglion of the crayfish Procambarus clarkii receive inhibitory inputs from mainly glutamatergic spiking local interneurons and GABAergic nonspiking interneurons. In this study, the inhibitory responses of nonspiking interneurons to local application of glutamate and GABA into the neuropil were compared. Glutamate and GABA injection mediat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 12 2 شماره
صفحات -
تاریخ انتشار 1992